
农业科技通讯 ›› 2025, Vol. 0 ›› Issue (10): 120-125.
田孟祥1, 余志2, 王立新1, 吴美玲1, 何友勋1, 叶永印1
出版日期:2025-10-17
发布日期:2025-10-28
作者简介:田孟祥(1983-),男,硕士,高级农艺师,从事水稻育种及栽培技术研究。E-mail:tmengxiang@126.com
基金资助:
Online:2025-10-17
Published:2025-10-28
摘要: 谷蛋白作为水稻中的主要贮藏蛋白成分,因其易被人体消化和吸收的特性,成为衡量水稻贮藏蛋白营养价值的关键要素。提高谷蛋白含量,能够显著提升稻米的蛋白质营养价值。然而,对于肾脏病患者、糖尿病患者等特殊群体而言,过量摄入这种易于消化的蛋白质可能会加重肾脏负担,进而加剧病情,因此研究与开发低谷蛋白功能稻品种显得尤为重要。基于这一目的,本文作者将全面综述低谷蛋白水稻的研究进展,并展望未来的研究方向,旨在为相关领域的研究提供有价值的参考与启示。
田孟祥, 余志, 王立新, 吴美玲, 何友勋, 叶永印. 低谷蛋白水稻研究综述及展望[J]. 农业科技通讯, 2025, 0(10): 120-125.
| [1] Chandra D, Cho K,Pham H A, et al.Down-regulation of rice glutelin by CRISPR-Cas9 gene editing decreases carbohydrate content and grain weight and modulates synthesis of seed storage proteins during seed maturation[J].International Journal of Molecular Sciences, 2023,24, 16941. [2] 王益华. 水稻谷蛋白合成途径关键基因的图位克隆与功能研究[D].南京:南京农业大学,2007. [3] Yang Y, Guo M, Sun S, et al.Natural variation of OsGluA2 is involved in grain protein content regulation in rice[J].Nature Communications, 2019,10(1):1949. [4] 田孟祥,陈涛,张亚东,等.水稻57H突变体glup-t的遗传分析与基因定位[J].作物学报,2011,37(4):717-722. [5] 田孟祥,陈涛,张亚东,等.水稻谷蛋白突变体的分类及其分子生物学研究进展[J].江苏农业学报,2010,26(4):874-881. [6] Masako F, Toshihiro K.Regulation of intracellular transport of the glutelin in the rice endosperm cell[J].Plant Morphology,2019,31(1):31-35. [7] Li T, Hong-Li C, Laining Z, et al.RNA-binding protein RBP-P is required for glutelin and prolamine mRNA localization in rice endosperm cells[J]. The Plant Cell,2018,30(10):2529-2552. [8] Liu F, Ren Y,Wang Y, et al.OsVPS9A functions cooperatively with OsRAB5A to regulate post-golgi dense vesicle-mediated storage protein trafficking to the protein storage vacuole in rice endosperm cells[J]. Molecular Plant,2013,6(6):1918-1932. [9] Liu Y W, Masako F, Mariko S, et al.Guanine nucleotide exchange factor 2 for Rab5 proteins coordinated with GLUP6/GEF regulates the intracellular transport of the proglutelin from the Golgi apparatus to the protein storage vacuole in rice endosperm[J].Journal of Experimental Botany,2015,66(20): 6137-6147. [10] Yu L R, Y H W,Feng L,et al.Glutelin precursor accumulation3 encodes a regulator of post-Golgi vesicular traffic essential for vacuolar protein sorting in rice endosperm[J].The Plant Cell,2014,26(1):410-425. [11] Yihua W, Feng L, Yulong R, et al.Golgi Transport 1B regulates protein export from the endoplasmic reticulum in rice endosperm cells[J].The Plant Cell,2016,28(11):2850-2865. [12] Yi H W, Yu L R, Xi L, et al.OsRab5a regulates endomembrane organization and storage protein trafficking in rice endosperm cells[J].The Plant Journal:for Cell and Molecular Biology,2010,64(5):812-824. [13] Ren Y, Wang Y, Pan T, et al.GPA5 encodes a Rab5a effector required for post-golgi trafficking of rice storage proteins[J].The Plant Cell,2020,32(3):758-777. [14] Xiao H H, Yi H W, Xi L, et al.The failure to express a protein disulphide isomerase-like protein results in a floury endosperm and an endoplasmic reticulum stress response in rice[J].Journal of Experimental Botany,2012,63(1):121-130. [15] Tian P, Yi H W, Ruonan J, et al.Post-golgi trafficking of rice storage proteins requires the small GTPase rab7 activation complex MON1-CCZ1[J].Plant Physiology,2021,187(4):2174-2191. [16] Jian P Z, Yulong R, Yuanyan Z, et al.Subunit E isoform 1 of vacuolar H+-ATPase OsVHA enables post-golgi trafficking of rice seed storage proteins[J].Plant Physiology,2021,187(4):2192-2208. [17] Yi H W, Su S Z,Shi J L,et al.The vacuolar processing enzyme OsVPE1 is required for efficient glutelin processing in rice[J].The Plant Journal:for Cell and Molecular Biology,2009,58(4):606-617. [18] 江绍玫,朱速松,刘世家,等.水稻谷蛋白突变体的筛选及遗传分析[J].遗传学报,2003(7):641-645. [19] 王艳平,汤陵华,方先文.天然低谷蛋白水稻突变体的筛选[J].金陵科技学院学报,2008(1):45-47. [20] 王继馨,张云江,程爱华,等.水稻蛋白亚基含量对米饭食味的影响[J].中国农学通报,2008(1):89-92. [21] Iida S, Amano E, Nishio T.A rice mutant having a low content of glutelin and a high content of prolamine[J].Theor Appl Genet,1993,87:374-378. [22] Iida S, Kusaba M, Nishio T.Mutants lacking glutelin subunits in rice: mapping and combination of mutated glutelin genes[J].Theoretical & Applied Genetics,1997,94(2):177-183. [23] Satoh H,Qu L Q, et al.Glutelin mutants induced by MNU treatment in rice[J]. RGN,1997,14:81-84. [24] Qu L Q, Wei X L, Satoh H, et al.New rice mutants lacking glutelin α-1 subunit[J]. Acta Genetica Sinica, 2001,28(3):229-235. [25] 曲乐庆,魏晓丽,佐藤光,等.水稻种子贮藏谷蛋白α-2亚基减少突变体[J].植物学报,2001,43(11):1167-1171. [26] Chen J, Miao Z, Kong D, et al.Application of CRISPR/Cas9 technology in rice germplasm innovation and genetic improvement[J].Genes,2024,15(11):1492-1492. [27] 周优,林冬枝,董彦君.CRISPR/Cas9技术定点编辑水稻谷蛋白基因GluA[J].上海农业学报,2019,35(1):22-28. [28] Chen Z H, Du H X, Tao Y J, et al.Efficient breeding of low glutelin content rice germplasm by simultaneous editing multiple glutelin genes via CRISPR/Cas9[J].Plant Science,2022,324:111449. [29] 周田田,唐兆成,李笑,等.利用基因编辑技术创制低谷蛋白水稻种质[J].作物学报,2024,50(10):2435-2446. [30] Alhusnain L,Alkahtani F D M, Attia A K, et al.Application of CRISPR/Cas9 system to knock out GluB gene for developing low glutelin rice mutant[J].Botanical Studies,2024,65(1):27. [31] Wakasa Y, Kawakatsu T, Ishimaru K, et al.Generation of major glutelin-deficient(GluA, GluB, and GluC)semi-dwarf koshihikari rice line[J].Plant Cell Reports,2024,43(2):51-51. [32] Tanaka Y, Hayashida S, Hongo M. the relationship of the feces protein particles to rice protein bodies[J].Agricultural and Biological Chemistry,1975,39(2):515-518. [33] Mochizuki T, Hara S.Usefulness of the low protein rice on the diet therapy in patients with chronic renal failure[J].The Japanese Journal of Nephrology,2000,42(1):24-29. [34] 郑天清,沈文飚,朱速松,等. 水稻谷蛋白突变体的研究现状与展望[J].中国农业科学,2003(4):353-359. [35] 江绍玫,徐朗莱,万建民.水稻谷蛋白研究进展[J].江西农业大学学报,2002(1):14-19. [36] Bechhanssen O, Rundqvist B, Lindgren F,et al.Abstract 8951: assessment of pressure reflection in the pulmonary circulation using echocardiography identifies patients with normal as well as increased pulmonary vascular resistance[J].Nippon Jinzo Gakkai Shi,2011,42(1):24-29. [37] 鲁新红,汪涛,赵志超.低蛋白米治疗慢性肾功能不全的临床观察[C]//中国营养学会第十一次全国营养科学大会暨国际DRIs研讨会学术报告及论文摘要汇编(下册)—DRIs新进展:循证营养科学与实践学术,2013. [38] Zhou T,Tang Z,Liu R, et al.High-resistant starch and low-glutelin content 1 rice benefits gut function in obese patients[J].Frontiers in Sustainable Food Systems,2024,8. [39] 胡国奥,詹晓北,李志涛,等.低谷蛋白大米在仿生大肠反应器中对肠道菌群结构及代谢的影响[J].食品与发酵工业,2021, 47(13):23-29. [40] 陈旭,陈选,杨炯,等.低谷蛋白大米对Beagle犬血糖生成指数的影响[J].食品科学,2020,41(17):126-132. [41] 王梨名,刘金凤,陈佳,等.低谷蛋白大米(W0868)对小鼠营养状况及肾功能的影响[J].第三军医大学学报,2021,43(1):68-74. [42] 季明,乔汉连,马梦青,等.低谷蛋白大米延缓慢性肾脏病小鼠肾功能进展[J].南京医科大学学报(自然科学版),2024,44(11):1491-1498,1509. [43] Makoto K, Kenzo M, Shuichi I, et al.Low glutelin content1: a dominant mutation that suppresses the glutelin multigene family via RNA silencing in rice[J].The Plant Cell,2003,15(6):1455-1467. [44] Morita R, Kusaba M, Iida S, et al.Development of PCR markers to detect the glb1 and Lgc1 mutations for the production of low easy-to-digest protein rice varieties[J].Theoretical & Applied Genetics,2009, 119(1):125-130. [45] Chen T, Tian M X, Zhang Y D, et al.Development of simple functional markers for low glutelin content gene 1(Lgc1)in rice (Oryza sativa)[J].Rice Science,2010,17(3):173-178. [46] 田孟祥,陈涛,张亚东,等.两个低谷蛋白基因插入缺失标记的设计与验证[J].分子植物育种,2010,8(2):340-344. [47] 方先文,杨杰,王艳平,等.水稻品种LGC-1的低谷蛋白性状连锁标记的开发与应用[J].分子植物育种,2010,8(4):657-659. [48] 方先文,张所兵,林静,等.水稻品种冷水糯的低谷蛋白性状连锁标记的开发与应用[J].分子植物育种,2011,9(6):692-695. [49] Fukuoka R, Hirabayashi H, Nishida M, et al.Breeding of a new rice line“Saikai 231”with low glutelin content[J].Breed Science,1996(supp1.1):223. [50] Nishimura M, Kusaba M, Miyahara K, et al.New rice varieties with low levels of easy-to-digest protein,‘LGC-Katsu’ and ‘LGC-Jun’[J]. Breeding Science, 2005,55(1):103-105. [51] Kim M K, Lee S B, Lee J H, et al.Low glutelins rice, mid-late maturing variety‘geonyangmi’[J].Korean Journal of Breeding Science,2014,46(2):160-165. [52] Lee J H, Lee J Y, Song Y C, et al.‘Geongyang2’:low glutelin and amylose content rice cultivar with mid-maturing[J].Korean Journal of Breeding Science,2015,47(4):437-441. [53] 万建民,翟虎渠,刘世家,等.功能性专用水稻品种W3660的选育[J].作物杂志,2004(5):58. [54] 南京农业大学技术转移中心,我校低谷蛋白水稻W0868品种权成功实施转化[EB/OL].[2017-04-25].https://jszyzx.njau.edu.cn/info/1066/2082.htm. [55] 新浪财经头条,新型功能性大米将在姜堰产业化[EB/OL].[2023-07-10].https://cj.sina.com.cn/articles/view/5675440730/152485a5a02001lijs. [56] 张云辉,张所兵,周金云亮,等.水稻低谷蛋白创新种质的选育和鉴定[J].植物遗传资源学报,2015,16(1):158-162. [57] 蔡金洋,杨尧城,徐伟东,等.利用分子标记辅助选育低谷蛋白水稻株系[J]. 浙江农业学报,2015,27(9):1505-1509. [58] 陈达刚,周新桥,刘传光,等.应用分子标记辅助选择培育籼型低谷蛋白水稻品系[J].分子植物育种,2016,14(7):1753-1758. [59] 郭涛,王海凤,薛芳,等.利用分子标记辅助选育低谷蛋白水稻新品种[J].山东农业科学,2018,50(8):29-34. [60] 田孟祥,何友勋,赵龙,等.应用分子标记辅助选育低谷蛋白水稻新品种[J].农业科技通讯,2021(10):149-151. [61] 陈涛,赵庆勇,朱镇,等.利用分子标记辅助选择培育优良食味、低谷蛋白香粳稻新品系[J].中国水稻科学,2023,37(1):55-65. [62] 吴越,胡静,江祺祥,等.功能性专用水稻品种武2812的选育[J].浙江农业科学,2011(6):1323-1324. [63] 汤剑豪,白建江,万常照,等.分子标记辅助选育聚合Lgc1和sbe3-rs基因的水稻新品系[J/OL].分子植物育种,1-10.[2023-9-1].https://link.cnki.net/urlid/46.1068.S.20230831.1410.012. [64] 江西省农业科学院.低谷蛋白水稻“五谷丰1号”[EB/OL].[2022-07-23].https://www.jxaas.cn/info/1366/16178.htm. [65] Guo D S, Ling X T,Zhou X G, et al.Evaluation of the quality of a high-resistant starch and low-glutelin rice(Oryza sativa L.)generated through CRISPR/Cas9-mediated targeted mutagenesis[J].Journal of Agricultural and Food Chemistry, 2020, 68(36):9733-9742. [66] Chen G D, Guo J,Chen K,et al.Pyramiding breeding of low-glutelin-content indica rice with good quality and resistance[J].Plants, 2023,12(21):3763. [67] Hu S, Yang L, Cai J,et al.Production of grains with low glutelin and high eating quality by using dominant allele Lgc-1 in three-line japonica hybrid rice[J].Plant Biotechnology Journal,2025,23(2):374-376. [68] 耿春苗. 氮肥及播期对低谷蛋白水稻产量和品质形成的影响[D].南京:南京农业大学,2011. [69] 黄曌. 低谷蛋白水稻品种的筛选及施氮量对其产量和品质的影响[D].成都:四川农业大学,2018. [70] 兰艳,黄曌,胡明明,等.施氮量对低谷蛋白水稻籽粒品质及蛋白质组分的影响[J].浙江农业学报,2019,31(2):182-190. [71] 兰艳,黄曌,隋晓东,等.施氮量对低谷蛋白水稻产量及品质的影响[J].华南农业大学学报,2019,40(4):8-15. [72] 兰艳. 氮钾肥对低谷蛋白水稻蛋白组分的影响及调控机制[D].成都:四川农业大学,2022. [73] 陈依露. 播期对低谷蛋白水稻产量及功能特性的影响[D].南京:南京农业大学,2014. |
| [1] | 张世文, 李艺茹, 方吴云, 朱倩. 适宜水面浮板种植的水稻品种筛选[J]. 农业科技通讯, 2025, 0(9): 56-60. |
| [2] | 李聪, 谢刚, 王志奎, 卢启清, 许纯珏, 赵德琪, 王锋, 张维乐, 谷刚, 唐晓艳. 优质浓香型杂交水稻新组合香禾优101的选育及栽培技术[J]. 农业科技通讯, 2025, 0(9): 158-160. |
| [3] | 赵维强, 阎淑滑, 孙刚强, 赵平, 顾桂兰, 王爽爽, 黄敬着. 我国辣椒用农药登记现状及存在的问题和建议[J]. 农业科技通讯, 2025, 0(8): 23-25. |
| [4] | 方文红. 安徽省水稻产业数字化转型实践与思考[J]. 农业科技通讯, 2025, 0(7): 18-20. |
| [5] | 崔丙苹, 卢林亚, 冯跃华, SOMSANA Phonenasay, 王晓珂, Muhammad Usama Latif, 宋正丽, 徐向军, 黄建华, 魏燕妮. 基于人工智能算法的水稻自动考种技术[J]. 农业科技通讯, 2025, 0(7): 117-120. |
| [6] | 冯大良, 何艺诚, 何文成, 雷茂安, 袁仁博, 林锋, 卢海明, 柳武革, 刘伯全. 杂交水稻新组合香禾优1002的选育及高产制种技术[J]. 农业科技通讯, 2025, 0(7): 168-170. |
| [7] | 王秀芬, 孔胜雪. 乡村振兴视角下河南省农业绿色发展水平分析[J]. 农业科技通讯, 2025, 0(6): 4-8. |
| [8] | 周果, 冯育伟, 朱克贤, 沈鑫, 许磊, 王露媛, 曹其珍. 基于新型农业经营主体发展的思考与建议——以贵州省正安县为例[J]. 农业科技通讯, 2025, 0(6): 19-21. |
| [9] | 游宏建, 李天杰, 刘晓敏, 赵玉纲, 李永辉, 豆显武. 蚯蚓堆肥缓解土壤连作障碍危害研究进展[J]. 农业科技通讯, 2025, 0(6): 111-116. |
| [10] | 马晓春, 张俊江, 范凌, 胡忠和, 高前宝. 高产优质杂交水稻新品种N两优658的选育及栽培技术[J]. 农业科技通讯, 2025, 0(6): 153-156. |
| [11] | 陈建. 德州市玉米密植高产精准调控技术推广实践与思考[J]. 农业科技通讯, 2025, 0(5): 16-18. |
| [12] | 李莹, 常青晓, 秦鹏, 王琛龙, 王占斌. 焦作市大豆玉米带状复合种植情况、存在问题及发展建议[J]. 农业科技通讯, 2025, 0(5): 19-21. |
| [13] | 徐烨晖. 常熟市水稻氮磷钾肥料利用率试验[J]. 农业科技通讯, 2025, 0(5): 37-40. |
| [14] | 郑娅琴, 赵品恒, 李燕飞, 李渊, 唐洋, 应晓成. 不同类型育秧基质处理对秧苗素质及水稻生长的影响[J]. 农业科技通讯, 2025, 0(4): 44-47. |
| [15] | 高晟楠. 不同诱变处理的水稻诱变效应研究[J]. 农业科技通讯, 2025, 0(4): 51-58. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||